
NASA Contractor Report 198341

ICASE Report No. 96-39

ICASE
PARALLEL NEWTON-KRYLOV-SCHWARZ
ALGORITHMS FOR THE TRANSONIC FULL
POTENTIAL EQUATION

Xiao-Chuan Cai, William D. Gropp, David E. Keyes,
Robin G. Melvin, and David P. Young

NASA Contract No. NAS1-19480
May 1996

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

DTIC QUALITY INSPECTED 3

16

Parallel Newton-Krylov-Schwarz Algorithms
for the Transonic Full Potential Equation

Xiao-Chuan Cai1

Department of Computer Science
University of Colorado at Boulder, Boulder, CO 80309

cai@cs.colorado.edu

William D. Gropp2

Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439

gropp@mcs.anl.gov

David E. Keyes3

Department of Computer Science
Old Dominion University, Norfolk, VA 23529-0162

keyes@icase.edu

Robin G. Melvin and David P. Young
The Boeing Company

Seattle, WA 98124
rgm4152@cfdd53. cfd. ca. hoeing, com
dpy6629@cfdd51. cfd. ca. hoeing, com

ABSTRACT

We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element
problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions
with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact
finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping
Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding
continuation strategy for problems with weak shocks, is robust and economical for this class of
mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several
parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density,
subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on
numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory
parallel computer.

'This author's work was supported in part by NSF grants ASC-9457534, ASC-9217394, and ECS-9527169,
by NASA grant NAG5-2218, and by NASA contract NAS1-19480 while the author was in residence at the
Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,
Hampton, VA 23681-0001.

2This author's work was supported by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W-31-109-Eng-38.

3This author's work was supported in part by NSF grants ECS-8957475 and ECS-9527169, and by NASA
contract NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE),NASA Langley Research Center, Hampton, VA 23681-0001.

1 Introduction

In the past few years domain decomposition methods for linear partial differential equations,
including overlapping Schwarz methods [9, 12, 13, 37], have graduated from theory into
practice in many applications [17, 27, 28, 34]. In this paper, we study several aspects of the
parallel implementation of a Krylov-Schwarz domain decomposition algorithm for the finite
element solution of the nonlinear full potential equation of aerodynamics, extending our
model studies of linear convection-diffusion problems in [5] and of linear aerodynamic design
optimization problems in [33]. Newton-Krylov methods [2, 3,14, 15, 39] are potentially well
suited and increasingly popular for the implicit solution of nonlinear problems whenever it
is expensive to compute or store a true Jacobian. We employ a combined algorithm, called
Newton-Krylov-Schwarz, and focus on the interplay of the three nested components of the
algorithm, since the amount of work done in each component affects and is affected by the
work done in the others.

Newton-Krylov-Schwarz is a general purpose parallel solver for nonlinear partial differ-
ential equations and has been applied to complex multicomponent systems of compressible
and reacting flows in, e.g., [6, 7, 29]. This paper is concerned with the simpler scalar problem
of the full potential equation, which describes inviscid, irrotational, isentropic compressible
flow. Though the full potential model is highly idealized, it remains the model of choice
of external aerodynamic designers to date, because codes based thereupon offer reasonable
turnaround times and in many cases high accuracy compared to state-of-the-art Navier-
Stokes solvers. Though derived under the condition of isentropy, the full potential model
remains useful in flows with weak shocks, with pre-shock Mach numbers of about 1.2 or
less. It can also be extended by boundary layer patching to incorporate viscous effects, by
a branch cut to accommodate lift, and by source terms to simulate powered engines. In
engineering practice, accurately modeling such nonideal effects in complex geometries ac-
counts for almost all of the lines of code, but the solution of the resulting discrete equations
accounts for the majority of the execution time. The lower per-cell storage and computa-
tional requirements of the potential model allow the use of grids dense enough to achieve low
truncation error levels for complex geometries. The full potential equation also avoids the
spurious entropy generation near stagnation often associated with Euler and Navier-Stokes
codes for industrial complex geometries of interest. We justify the simply coded examples
in this paper by our focus on a solution algorithm that should not require any changes other
than greater irregularity in its sparse data structures to be useful in more practical settings.

With Newton's method as the outer iteration, a highly nonsymmetric and/or indefinite
large, sparse Jacobian equation needs to be solved at every iteration to a certain accu-
racy, which is often progressively tightened in response to a falling nonlinear residual norm.
The most popular family of preconditioned for large sparse Jacobians on structured or un-
structured grids, incomplete factorization, is difficult to parallelize efficiently flop-for-flop in
its global form. In our approach, the ILU-preconditioner for the Newton correction equa-
tions is replaced by a multi-level overlapping Schwarz preconditioner. The latter is not
only scalably parallelizable (up to available granularities), but also possesses an asymptoti-
cally optimal mesh- and granularity-independent convergence rate for elliptically dominated
problems. Our two-level overlapping additive Schwarz algorithm uses a non-nested coarse
space. Subdomain granularity, quality of subdomain solves, coarse grid density, strategy for

coarse grid solution, and inner iteration termination criteria are important factors in overall
performance. We report numerical experiments on an IBM SP2 with up to 32 processors.

The outline of this paper is as Mows. In §2, we briefly derive the form of the fuU
potential equation that serves as the point of departure for the numerics. The finite ele-
ment discretization and the construction of an approximate Jacobian for the full potential
equation are discussed in §3. §4 is devoted to the description of the basic components of
the NKS algorithm. Several parallel implementation issues are explained in §5. Numerical
results are summarized in §6. FinaUy, we offer some general remarks on the use of NKS

algorithms in §7.

2 The full potential problem

For completeness, we summarize the derivation and assumptions of the full potential equa-
tion of aerodynamics. For a more thorough development, see [23].

The equation of mass conservation in a steady state fluid flow can be written in diver-

gence form,
V•(pv) = 0, (1)

where v = (v1,v2)
T is the velocity and p is the local density, respectively. We assume that

the flow is irrotational, which implies that there exists a velocity potential $ such that
v = V$. Furthermore, the relation f? - const, holds for isentropic flow of a perfect gas.
With the above assumptions, we can integrate the inviscid momentum equations and obtain
Bernoulli's equation

2 2

— H = const., (2)
2 7 - 1

where q = (v\ + v\)^2 = ||V$||2 is the local flow speed. The sound speed a is defined by
a2 = dp/dp, where p is the local static pressure. By means of the above relations, the five
unknown fields t?i, v2,p, a, and p can be eliminated in favor of a single unknown function $,
which solves the full potential equation:

V • (p(*)V*) = 0. (3)

Two forms of this equation are standard in the literature, depending upon whether the
density is referenced to a uniform freestream (at oo) or to a stagnation point condition. We
derive the freestream version as follows. From Bernoulli's equation (2).

~2 n2 a2 n2

+ a =
<kn + ffl°° (4)

2 7-1 2 7-1'

we have that

alo 2a5o 2 \ W

where M = q/a is the Mach number, and M^ is the freestream Mach number. From the
definition of the sound speed and the pressure-density relation, we obtain

ß2 = ^)=C7p,-i5 (6)
dp

or equivalents, (^)2 = (^)7-1- Therefore,

/>(*) = Poo (l + ^MUl - H^lil))1/(7 X). (7)

Observe that while the density is positive in regions of validity, (3) may be locally hyperbolic.
Equation (3) requires boundary conditions. In this paper, we consider only subsonic

farfield boundaries. Since our emphasis is on the performance of the Schwarz precondi-
tioning, we study a symmetric nonlifting case, thus avoiding consideration of the Kutta-
Joukowsky boundary condition. To keep the geometry of the domain trivial, we use a
classical transpiration boundary condition on a slit to represent the airfoil. Transpiration
refers to a continuously parameterized injection and removal of fluid along a portion of
the boundary to create a recirculation pocket with a bounding streamline attached to the
domain boundary at both ends, over which the flow of interest passes inviscidly. Transpira-
tion is implemented as an inhomogeneous Neumann condition. A theoretical discussion of
the use of transpiration boundary conditions to model displaced surfaces can be found in
[25]. For the farfield boundary condition, we use Dirichlet values of the potential upstream.
More sophisticated farfield conditions are possible, and are required in the case of a lifting
airfoil, but these conditions are sufficient for excellent agreement of our numerical results
with standard nonlifting solutions.

3 Finite element approximation

Following Boeing's TRAN AIR code [42], we employ a finite element formulation of the
two-dimensional full potential equation using bilinear elements. The existence, uniqueness,
and regularity of the solution are not central to this paper, but have been discussed in the
papers [31, 35] and references therein. Related finite element approaches for this class of
full potential equations can also be found in [1, 16]. A finite volume scheme was given in
[30] and a mortar element-based domain decomposition scheme was recently parallelized to
high efficiency in [26].

3.1 Basic finite element scheme

The finite element problem is formulated in terms of the weak form

a(9,v)= / p($)V$ • Vü eftl

We use bilinear elements on a rectangular partition of 9, denoted by tth = {n, i = 1,..., M/J.
Let {<t>i(x,y)} be the usual nodal basis functions. The numerical solution we seek has the
form

and satisfies the following nonlinear algebraic equations

Mh .

£>(§(*uc)) / vwvdn = o, (8)
i=\ Jr>

for aU v in the test function space. Here (x?,yf) is the center point of the rectangle r,-.
To simplify and speed up numerical integration, we introduce certain approximations when
dealing with some of the nonlinear forms. The way that we treat the local nonlinear
numerical integration in (8) is like that in [42]. Let us define a system of nonlinear equations

F($) =

/ F1($1,---,$N,P($U---,$N))

= 0,

where

reüh

(9)

(10)

and (x%, yc
T) is the center point of the element r. We construct the Jacobian matrix J = {Jij}

of the nonlinear system F = 0, approximately, as Mows. For each pair of indices ij, we

define , ,

_,-o. Jr Ö$i
+

ren,,

5/
TS^h

^^|:(l|v$||^)(v$-v^)^,

where 5 = ||V$|ß. To simphfy the numerical integration, the exact Jacobian value above

is replaced by

Jij = £ ^$K, 2/r)) | Wi • V^)dß : +
renh

(11)

where the value of dp/ds is calculated at the element center point. We remark here that,
because the density function p is not a constant, the Jacobian matrix is generally non-
symmetric and possibly indefinite. The explicit construction of the Jacobian matrix is not
necessary if we use an unpreconditioned Newton-Krylov method; however, to implement a
Schwarz preconditioner, explicit approximation of the Jacobian matrix is needed in each

sub domain.

3.2 Density upwinding schemes

For subsonic problems, the above mentioned finite element method is sufficient; however,
for transonic cases upwinding has to be introduced in the density calculation in order to
capture the weak shock in the solution. The proper use of an upwinding scheme is essential
both to the success of the overall approach in finding the correct location and strength of
the shock and to the convergence, or the fast convergence, of the inexact Newton's method.

As mentioned earlier, density p is assumed to be a constant in each element, and this
constant is ordinarily determined by the four values of $ at the corners of the element,

-X-

Pe

X - - -

-X- -

P3

Pi

Pi

if
P2

Pi ' P8 • P9 '
I I I

X - - -X- - - X - - -X-

X

- X

- X

X

Figure 1: The finite element stencil. $ is stored at the cell vertices and p at the cell centers.

through (7). Following [24, 42], if an element is determined to be supersonic, or nearly so,
its density value is replaced by

p = p-pV-V.p, (12)

where V is the normalized element velocity and V_p is an upwind undivided difference.
For example, with reference to Fig. 1, if V = (Vx, Vy) and Vx, Vy > 0 in the element marked
with p\, then

pi = pi- niVsip! - pe) + Vy(pi - ps)).

Here p is the element switching function,

/z = i/omax{0,l-Mc
2/M2}, (13)

where M is the element Mach number, Mc is a pre-selected cutoff Mach number chosen to
introduce dissipation just below Mach 1.0, and v0 is a constant usually set to something
between 1.0 and 3.0 to increase the amount dissipation in the supersonic elements. Pa-
rameters Mc and VQ may be varied to advantage between Newton steps in problems with
shocks. Roughly speaking, Mc controls the spatial extent of the upwinding; as it drops
below 1.0 upwinding is triggered in a greater number of subsonic (but nearly sonic) cells.
Mc, t'o, and V together control the amount of the upwinding in a triggered cell. A low
Mc and a high VQ stabilize convergence but diffuse the shock. As iterations progress, Mc

should approach 1.0 and VQ should be decreased to steepen up a shock whose location and
strength has converged. A well resolved shock will take many Newton steps to settle on its
correct location, whereas a diffuse shock centers quickly on this location. A carefully chosen
sequence of Mc and VQ can considerably accelerate the Newton's convergence; more details
on this "viscosity damping" can be found in [41]. Another way to control the convergence
of Newton's method is through the use of iterated maximization of the switching function,
as described below and apparently first discussed in [22].

For each element, p as defined by (13) is called the zeroth level switching function and

is denoted more precisely as p,(°\ In Fig. 1, there is a nonzero p\ ' for each element marked
with pi. The first level switching function for the element marked with p\ is defined as

/4X) = max{40),.--,4°)}J

namely, /i[1} is the maximum of the all the \i values in its immediate neighborhood. A
(Ar + l)-level switching function is defined recursively as the maximum of the neighboring

Ar-level (i values.
Results for k = 2 are reported in §6. A rather tight Mach cutoff is used, namely

Mc
2 = 0.95, and we set u0 to 1.0.
We remark that large k results in greater discrete data dependency, or larger effective

stencil size, in both the nonlinear function and the Jacobian. For example, if k = 0, the
stencil contains at most 9 points (e.g., the nine mesh points immediately surrounding (i,j)
in Fig. 1). If k = 1, then some of the "x" points may join the stencil depending the
flow direction, and the stencil may contain as many as 16 points. The increase in the
stencil bandwidth does not cause much of a problem in the nonlinear function evaluation,
but would substantially increase the memory requirement of the Jacobian matrix, which
is constructed and stored for the Schwarz preconditioner at the beginning of each Newton
iteration. To keep the memory requirements small in practice, we do not calculate or store
the matrix elements introduced by using the iterated switching function. Our numerical
experiments show that this extra level of approximation of the Jacobian matrix does not, in
fact, appreciably reduce its power as a preconditioner. This is analogous to the practice in
[7] of using Jacobian blocks based on first-order upwinding to drive a second-order upwinded
residual to zero, in an inexact Newton iteration. Though not much discussed in the theory of
approximate Newton methods for systems arising from PDEs, such techniques are commonly
applied in stationary iterations in steady-state aerodynamics codes. Especially in three
space dimensions, using simplified upwinding in the Jacobian matrix dramatically reduces
cost at a small expense in convergence rate degradation.

4 Newton-Krylov-Schwarz algorithms

NKS is a family of general purpose algorithms for solving nonlinear boundary value prob-
lems of partial differential equations. In terms of software development, NKS has three
components that can be handled independently. However, to achieve reasonable overall
convergence, the three components have to be tuned simultaneously. We discuss these

components in turn.

4.1 The matrix-free Newton method

In this subsection, we briefly discuss the well known matrix-free inexact finite-difference
Newton algorithm, and the Eisenstat-Walker forcing functions [15]. Starting from an initial
guess $o, which is sufficiently close to the solution, a solution of the nonlinear system (9)
is sought by using an inexact Newton method: For some r\k G [0,1) find sk that satisfies

\\F($k) + J($k)sk\\<rik (14)

and set $fc+i = $fc + hsk, where Xk G (0,1) is determined by a line search procedure
[11]. In practice, the method is insensitive to the details of the method used to determine
Afc. Much more important is nonlinear continuation in grid density, dissipation, and other
parameters. The iteration is continued until convergence, typically defined in terms of a

sufficiently small ||F($jt)||- The vector sk is obtained by approximately solving the linear
Jacobian system

J($k)sk = -F(9k)

with a Krylov space iterative method. The action of Jacobian J on an arbitrary Krylov
vector w can be approximated by

J(9k)w « l- (F(** + ew)- F(*jfe)).

Finite-differencing with e makes such matrix-free methods potentially more susceptible to
finite word-length effects than ordinary Krylov methods. Left preconditioning of the Jaco-
bian with an operator B'1 can be accommodated via

B-lJ{*k)v, « l- (B-xF{^h + ew)) - F(*kj) ,

where F($k) = B^F^k) is stored once, and right preconditioning via

J{$k)B-lw « i (F({9k + eB-xw)) - F{$k)) . (15)

Right preconditioning is preferable when the focus is on comparing different preconditioners
in vitro, since the true linear residual norm that is measured as a by-product in Krylov
method GMRES (see next subsection) and used in the termination test is independent
of any right preconditioning. On the other hand, any left preconditioning changes this
by-product residual norm. For this very reason, left preconditioning may be preferable
when GMRES is applied in vivo as the solver for an inexact Newton method. When the
preconditioning 5_1 is of high quality, the left-preconditioned residual serves as an estimate
of the error in the Newton update vector. This estimate can be employed in a termination
condition. In this paper, one of our emphases is assessing preconditioner quality, and we
report only right-preconditioned results.

The most expensive component of the algorithm is the solution of the linear system with
the Jacobian at each Newton iteration. As discussed in Eisenstat and Walker [15], when
$fc is far from the solution, the local linear model used in deriving the Newton method may
disagree considerably with the nonlinear function itself, and it is unproductive to "over-
solve" these linear systems. We tested several stopping conditions, including those discussed
in [15], and found that the best choice for our problems, based on elapsed execution time for
a fixed relative nonlinear residual norm reduction, is simply to set % = 10-2||-F($fc)||2- In
fact, even the looser rjk = 10_1||jP($fc)||2 is sufficient for the first few Newton iterations, but
not much time is saved by switching dynamically among these two already loose criteria,
so we use the first throughout.

4.2 Krylov iterative methods

We use the GMRES method [36], to solve the linear system of algebraic equations

Px = b, (16)

where P is the matrix appears in (15), and b is the negative of the nonlinear Newton
residual vector in (9). The method begins with an initial approximate solution x0 € R

n and
an initial residual rQ = b - Px0. At the mth iteration, a correction vector zm is computed

in the Krylov subspace

JCm(ro) = sp&n{r0,Pr0,---,P
m~1r0}

that minimizes the residual, m.mz€^m{ro) \\b - P(x0 + z)\\2. The mth iterate is thus xm =
x0 + zm. To fit the available memory, one is sometimes forced to use the &-step restarted
GMRES method [36]. However, in this case neither an optimal convergence property nor
even convergence is guaranteed. In our experiments, we do not need to solve the linear

systems very accurately; i.e., rj = 1CT in

\\b - Pxm\\a < rj\\rQ\\2

is sufficient to capture an accurate solution to the nonlinear problem, in both subsonic and
transonic cases. We do observe that, for certain maximum Krylov subspace dimensions
(for example 30, in a problem with approximately 104 times as many discrete unknowns)
and certain Mach numbers (M«, = 0.8), the restarted GMRES can never reduce the initial
residual below 10~5. In other words, there is no linear convergence. It is further noticed
in such cases that the residual norm measured as a by-product in GMRES is no longer the
same as, or even close to, the true residual norm except at the restarting points, where it
is freshly updated.4 A loose linear convergence tolerance avoids this problem by returning
to the Newton method with a step that is far from exact. In the delicate balance between
few nearly exact Newton steps with expensive inner linear solutions and many inexact
Newton steps with bounded-cost inner linear solutions, we find the bottom line of overall
execution time best served by bounding the inner linear work. This approach is also found
most effective in the context of inviscid aerodynamics based on the primitive variable Euler
equations in [7]. It deprives Newton's method of its asymptotic quadratic convergence, but

provides steep linear convergence.

4.3 Two-level overlapping Schwarz preconditioned with non-nested coarse
spaces

In this subsection, we discuss a two-level overlapping Schwarz preconditioner with inexact
subdomain solvers and non-nested coarse grid. Let ft be the domain of the full potential
equation. We first partition the domain into nonoverlapping substructures ft;, i = 1, • • •, N.
To obtain an overlapping decomposition of the domain, we extend each subregion ft; to a
larger region ft-, i.e., ft; C ft-. Only simple box decomposition is considered in this paper:
all the subdomains ft; and ft • are rectangular and are made up of integral numbers of fine
mesh cells. For simplicity, we also assume that all substructures are of the same size. More
precisely, the size of ß,-,"t = 1, • • •, A, is Hx x Hy and the size of fi|- is H'x X H'y, where the

4We believe, after Saad (personal communication), that this may be due to a lack of floating point
commutativity in the product that expresses zm in GMRES, namely zm = PVmy, where Vm is a Gram-
Schmidt basis for Km and y is a coefficient vector of dimension m that satisfies a related least squares
problem (see [36]). The effect seems related to drastic variations in the magnitude of successive elements of

H' are chosen so as to ensure a discrete overlap, denoted by ovlp, which is uniform in the
number of fine grid cells all around the perimeter, i.e.,

ovlp=(H'x-Hx)/2 = (H'y-Hy)/2,

for interior subdomains. For boundary subdomains, we simply cut off the part that is
outside ft. Fig. 3, which appears later with the definition of numerical boundary conditions,
illustrates a decomposition with an overlap of three fine mesh cells.

On each extended subdomain ft;, we construct a so-called subdomain preconditioner
Bi = {Jij}, where the node indexed by (i,j) belongs to the interior of ft-. Jij is calculated
by using the formula (11). The density upwinding discussed earlier is used in the transonic
cases. Homogeneous Dirichlet BCs are used on the internal subdomain boundary dft, f*l ft,
and the appropriate external boundary condition is used on the physical boundary if present.

We next discuss the construction of the coarse grid and the coarse grid preconditioner.
The coarse grid is built independently of the fine mesh. We cover 0 with another uniform
rectangular mesh ft# - {rf',i = 1,...,M#}, and at each coarse node we introduce a
bilinear finite element basis function ^i(x,y). The set of coarse nodes is not generally a
subset of the fine mesh nodes. In other words, the discrete subspaces defined by the two
meshes are generally non-nested [4]. Both coarse and fine grids cover the entire ft, and
they share the same boundary, which they both resolve exactly because of its prescribed
simplicity. (The case of a multi-level Schwarz preconditioner for geometrically complex
grids, in which only the finest level exactly resolves the boundary geometry, is considered
in [10].) The coarse grid preconditioning matrix B0 is defined by using formula (11) with
respect to the basis functions {*,}. The coarse grid matrix arises from an independent
discretization, not an agglomeration of fine grid matrix. No upwinding is used on the
coarse grid even in the transonic case. Empirically, the convergence may be slowed down
if the density upwinding is used at the coarse grid, since a poorly located shock may be
"resolved" and added to the fine grid solution. We do not fully understand the reason for
this slowdown, and believe we are not alone in regarding the choice of a coarse grid operator
for mixed elliptic-hyperbolic problems as one of the most important outstanding questions
in multilevel preconditioning.

The interaction of the coarse and the subdomain preconditioners is through the inter-
polation and restriction operations. We define the coarse-to-flne interpolation matrix, i#,
as follows. Let ifa = {Uj} be an Mh x MR matrix, and

H,j = ™j\xi)i

where X{ is ith fine mesh node. The fine-to-coarse restriction matrix is defined as (i#)T,
the transpose of Ifj. The additive Schwarz preconditioner can be written as

B-1 =Ih
HBv\lh

H)
T + hBil{h)T + --- + INB-N\lN)T. (17)

Let n\ be the total number of nodes in ft;, then I{ is an Mh x n- extension matrix that
extends each vector defined on ft; to a vector defined on the entire fine mesh by padding
an n- x n'{ identity matrix with zero rows.

Various inexact additive Schwarz preconditioners can be constructed by replacing the
matrices Bi, i > 0, in (17) with convenient and inexpensive to compute matrices, such as

9

those obtained by using local incomplete factorizations. The coarse grid operator B0
1 is

always applied exactly. Some detailed comparisons of (17) with global ILU preconditioned
on rather general scalar problems can be found in [5]. Experience with transonic potential
problems in the Boeing TRAN AIR code can be found in [40].

5 Parallel implementation issues

We implemented the family of NKS algorithms on the IBM SP2. The top-level message-
passing calls are implemented through the Chameleon Package of Gropp and Smith [19],
which uses the IBM MPL library.

The code is written in a hostless manner. Each processor is assigned one subdomain,
and the information pertaining to the interior of the subdomain is uniquely owned by that
processor and is not available to any other processors except by message passing. FoUowing
the parallel complexity study in [18], the low-storage coarse mesh information is duplicated
in each of the processors. On each processor, we store the subvectors and subblocks of
the Jacobian matrix associated with an extended subdomain. For the coarse-grid precondi-
tioner, the right-hand vector is built by a parallel fine-to-coarse restriction operation. Once
the right-hand vector is obtained, the coarse linear system is solved simultaneously on all
of the processors. The solution is then added to the local subdomain solutions by using a
parallel coarse-to-fine interpolation operation. In aU the experiments that we have done,
the size of the coarse linear system is so small that the CPU time spent on it is negligible.

ni
! i i
ii i

"1!
fli ! | L. : %

i i

!■ ■

i i !i i

Figure 2: Illustration of two-way buffer copies required at each nearest-neighbor boundary.
For each action of the Schwarz preconditioner on a vector the data needed in the extended
regions are copied from the interior of neighboring subdomains. The amount of data moved
for each processor is proportional to the area of overlap.

The multiplication of a vector with the Schwarz preconditioner is the most expensive
operation in terms of memory consumption and execution time. At the beginning of each
nonlinear iteration, the ^-dependent local and coarse grid preconditioning matrices are
computed explicitly, and stored in Compressed Sparse Row (CSR) format. According to
the desired type of local solver (see below), the matrices are factored, and the upper and
lower triangular parts stored. The matrices for the interpolation and restriction between
the coarse and fine meshes are independent of $, and are calculated in a preprocessing

10

step. After the solution of each subproblem is obtained, those portions that lie within
the overlapping regions (bounded by the dashed boxes in Fig. 2) are sent to neighboring
subdomains to complete the summation defined in (17). The length of the message is
proportional to the area of overlap.

Y

h r5

&

r4

.._«;__.

Üi

—>•
X

Figure 3: Domain Q with an exaggerated NACA 0012 curve at the bottom. The dashed lines
indicate the partition of the domain into nonoverlapping substructures, and the dotted lines
indicate the overlapping subdomains. The incomplete fine mesh of solid lines illustrates an
overlap of 3 subintervals. T& is the inflow, T5 the freestream, and T4 the outflow boundary.

6 Numerical results

In this section, we report some numerical results obtained on the IBM SP2 with up to 32
processors for both subsonic and transonic flows. The SP2 offers subsets of dedicated nodes
through a batch scheduler. Other jobs on different dedicated subsets share the communica-
tion network, but processor allocation tends to concentrate intercommunicating processors
onto independent subnetworks. We report five performance metrics for each run: (1) the
total number of Newton iterations; (2) the total number of GMRES iterations; (3) the total
execution time (including the pre-processing step such as the decomposition of the mesh, the
calculation of message lengths and the allocation of sparse matrices, all communication and
synchronization overhead, etc.), which is an average over all processors; (4) the megaflop
rate, which is a sum of the rates on each processor; and (5) the total communication time,
which is an average over all processors (isolated out of (3)). Metrics (1) and (2) are of
interest in understanding convergence rates, while (3), (4) and (5) are useful in assessing
bottom-line performance and modeling scalability.

11

The computer code was first developed on a network of workstations, and then moved
to the IBM SP2, changing only a UNIX makefile. To obtain the best performance of the
code, in terms of either the elapsed time or the megaflop rate, is not the main purpose of
this paper. We provide the execution time and megaflop information for all the calculations
for completeness. Though compiler optimization was used, the listed megaflop rates are an
order of magnitude below their peak values. Greater attention to cacheing is undoubtedly
required to improve this situation, and will potentially be simplified when addressed in the
future by the domain-oriented structure of the software.

6.1 Test problem and parameter selection

12 is a unit-aspect ratio square partitioned into a uniform rectangular meshes up to 512 x 512
in size. Let q^, the farfield flow speed, be normalized to 1. In Fig. 3, let $<» = jxq<x>dx.

We assume the following boundary conditions.

• On the farfield boundaries T4, T5 and T6, we assume $ = $oo-

• On r2,
— = -V$oo -{nx,ny),
oy

where n = (nx,ny) is the unit outward normal, and where y = f(x) describes the
shape of airfoil for x G T2. Once the function f(x) is given, this condition becomes

d* t't \
Ty = -q°°f {X)-

• On Ti and T3, we impose for symmetry the no penetration condition

dn dy

The functional form used for the NACA0012 geometry [38] is

f(x) = 0.17814(v^ -x) + 0.10128(a;(l - x)) - 0.10968z2(l -i) + 0.06090^(1 - x),

for x € (0,1). This unit interval is scaled to (1/3, 2/3) in the overall domain. The blunt
leading edge of the airfoil poses a technical problem for the transpiration boundary condi-
tion, since f'(x) is undefined there, so we slightly modify the function f(x). The curve in
the interval [0,0.047059] is replaced by a parabola with a matching function value at x = 0,
and matching function and first derivative values at x = 0.047059.

A number of parameters need to be specified in the NKS algorithms. The selection of
some parameters, such as the number of subdomains, is related to the granularity of the
architecture, not to the equation, itself. Altogether, we have

• Switching-function parameters, in the transonic case (§3.2). The level of maximization
of the switching function is set to 2, VQ is 1.0, and the cutoff Mach value is Mc

2 = 0.95.

12

• Finite differencing parameter, e (§4.1). We find that for the nondimensional scalar
full potential equation, the numerics are not very sensitive to e. We simply set it to
10~8, near the square root of the machine epsilon.

• Newton convergence parameters (§4.1). The initial guess is a simple interpolation of
the farfield boundary condition. Nonlinear convergence is declared following a 10-10

relative reduction of the initial residual. The step size reduction ratio in the line
search is 0.5 and the termination tolerance is 10-4.

• Krylov convergence parameters (§4.2). The convergence tolerance for the linear iter-
ative solver at each Newton iteration % = 10-2||jF($fc)||2 • We restart GMRES at
every 30th iteration.

• Number of subdomains, ns (§4.3). Since only the additive version of Schwarz is under
consideration, we always set that the number of subdomains is the same as the number
of processors, np, which varies from 8 (the minimum required to store the problem) to
32 (the maximum available within power-of-two configurations). (In a multiplicative
algorithm [37], we would set n to np times the number of colors.)

•

•

Overlapping size, ovlp (§4.3). In fact, there are two overlapping sizes, in x and y
directions. In this paper, we assume the same number of fine mesh cells, ovlp =
1,..., 5, are extended in both directions.

Coarse grid size (§4.3). This varies from no coarse grid (0 x 0) to a coarse grid with
a modest number of points in each subdomain (10 x 11). (The coarse grid cells are
square, but asymmetry in the employment of Neumann boundary conditions in the x
and y directions makes the total number of gridpoints off by one.)

Level of fill, k, in ILU (§4.3). According to our past experience with multilevel pre-
conditioning [5] and similar experience on a industrial-grade transonic potential code
[33], relatively modest fill-in is optimal for small subdomains. Intuitively, little is
lost relative to the coupling already sacrificed at subdomain boundaries. However,
as the local memory keeps increasing on powerful modern parallel computers, such
as the IBM SP2, the size of the subdomain problems can be quite large. For large
subdomain problems, low level of fill-in is no longer as effective, k varies from 0 to 5
in our experiments, then jumps discontinuously to the full band in the case of exact
subdomain solves.

6.2 Observations — subsonic case

Our first test case corresponds to a subsonic problem with M^ = 0.1. The linear systems
that arise fall within the elliptic theory for Schwarz [37]. It takes 6 Newton iterations to
reduce the initial nonlinear residual by a factor of 10-10. Because of the Krylov dimension
cut-off, the convergence is linear; see the left panel in Fig. 4. The top portion of Table 1
shows the convergence performance for a fixed-size problem of 512 x 512 uniform cells with an
increasing number of subdomains: 8, 16 and 32. The overlap size is fixed at 3h. The density
of the unnested uniform coarse grid varies from 0 x 0 to 10 x 11. Key observations from this

13

NACA0012. Mach = 0.10
NACA0012. Mach = 0.10

10 15
Newton steps

0.45 0.5 0.55
Unfern mesti 512X512

Figure 4: For M«*, = 0.1, the left figure shows the history of the Newton residual, and the
right shows the (upper surface) Cp curve at convergence.

example are as Mows: (1) Even a modest coarse grid makes a significant improvement in
an additive Schwarz preconditioned especiaUy when the number of subdomains is large. As
much as 40% of the execution time can be saved when adding a 2x3 coarse grid to a no coarse
grid preconditioned for the 32-subdomain case. (2) A law of diminishing returns sets in at
roughly one point per subdomain. (3) When using 8 processors, the total communication
time is always less than 5% of the total computational time, however, it becomes as much
as 26% when using 32 processors. (This includes synchronization delays as well as the time
actually delivering the message packets from application process to application process.)
Table 2 shows the effects of the overlap size. For simplicity, we fix the coarse grid to 6 x 7
for all test cases. The overlap size is given here in absolute terms, i.e., the distance between
the boundary of the unextended subdomain and the extended subdomain, not relative to
the diameter of the subdomain. All the subproblems are solved with the exact Gaussian
elimination in sparse format. Since the fine mesh size is fixed, when using small number of
processors, such as np = 8, the single processor memory requirement is substantial. In this
case, increase the overlap size can indeed reduce the total number of GMRES iterations,
but the reduction of the total execution time is rather limited.

In Table 3, we present the results when the subproblems are solved with ILU(&) for
various levels of fill-in. The overlap size is 3/i, and the coarse grid is 7 x 8. The conclusion
from the tests shown is that the larger the k, the faster the method becomes; see the boxed
numbers in Table 3. When using a small number of processors, like 8, the best execution
time is obtained with ILU(5); compare the upper portions of Tables 1, 2 and 3, However, if
the processor number is large, the optimal result can only be obtained by considering several
parameters: ovlp, k, the coarse mesh size, and perhaps others. We have not simultaneously
varied aU relevant parameters to get the best results, but have presented controlled slices

through parameter space for insight.
Load balancing should not be a significant issue in the dedicated-processor subsonic case.

AU processors have nearly the same computational load, except those which have to handle
the Neumann boundary conditions. This is no longer true for the transonic calculation,
when a shock resides in some of the subdomains. See §6.4.

14

NACA0012, Mach = 0.80 NACA0012, Mach = 0.80

5 10 15 20 25
Newton steps

0.35 0.4 0.« O.S 0.55 0.6 0.65
Uniform mesh 512X512

Figure 5: For Moo = 0.8, the left figure shows the history of the Newton residual, and the
right shows the (upper surface) Cp curve at convergence.

NACA0012. Mach = 0.80 NACA0012. Iso-Mach lines, Mach number = 0.80

0.45 0.5 0.55
The convergence history

Figure 6: The left figure shows the convergence history of the Cp curves at M^ = 0.8. The
right figure shows the Mach contours of the final solution at M^ = 0.8.

6.3 Observations — transonic case

Figure 5 shows the convergence history and converged Cp for a transonic problem with
Moo = 0.8. The first and most important observation is that without a proper upwinding
discretization, all three components of NKS can fail. Fig. 6 shows the convergence history
in terms of the Cp curves. We note that it takes only 4 to 5 iterations for the Newton's
method to establish the neighborhood of the shock, but another 15 or so iterations to move
it to the exact location. Mach contours at the final solution are given in Fig. 6. While the
shock is setting up, the linear convergence of Newton's method is interrupted; see the left
panel of Fig. 5.

The results for coarse grids of varying size are summarized at the bottom part of Table 1.
The columns marked 0x0 and 2x3 reveal an interesting result for a mixed elliptic-hyperbolic
problem. The inclusion of a small coarse grid can reduce the total number of the linear

15

NACA0012, Mach = 0.8, GMRES residual curves
NACA 0012, Mach = 0.8, GMRES residual curves

50 60
iteration number

40 50 60
Iteration number

Figure 7: The GMRES convergence history for the entire nonlinear iteration. The left figure
does not have a coarse space in the Schwarz preconditioner, the right figure contains a 7 x 8
coarse space. The number at the tail of each curve corresponds to the Newton iteration

number.

iterations, as well as the total execution time, by a factor of 30%. An optimally chosen
coarse grid size can lead to a greater savings. In Fig. 7, we overlay the convergence histories
of all the linear solutions in a complete nonlinear calculation. The history in the left panel
is without a coarse grid, and that in the right with a 7 x 8 coarse grid. The corresponding
execution time requirements can be found in Table 1.

The number of linear iterations and the total execution time can be reduced even further
if a proper overlap size, which is not usually very small, is used; see Table 2.

The best result, in terms of the total execution time, among all the test calculations is
obtained using a ILU(fc), with * = 5, as the subproblems solver; see Table 3. It takes less
than 1\ minutes on the 32-processor IBM SP2 to set up and solve the Mach 0.8 nonlinear
system with more than a quarter of a million unknowns.

6.4 Parallel efficiency

The parallel efficiency of the present algorithm-software-hardware system is encouraging,
but it is useful to sort out in detail where efficiency is lost in going from 8 to 32 processors.
We display the parallel performance in Table 4, whose first three columns are excerpted
from the first and last columns of Table 3. The execution time data in the last column
of Table 3 is the best, or nearly the best, for each Mach number and parallel granularity
out of all of the parameter combinations considered, and is therefore the most meaningful
from which to draw parallel efficiency conclusions, though more flattering conclusions could
be drawn from runs that were performing more computation per node per communication

exchange.
After the number of processors, we list the number of linear GMRES iterations per 6

Newton steps in the upper (subsonic) half of the table, and per 19 Newton steps in the
lower (transonic) half of the table. Then we list the execution time, per 6 or 19 Newton
steps, respectively, these being the typical number of Newton steps required to fully solve

16

the nonlinear problem. Fig. 7 shows that, for the transonic case, the number of GMRES
steps can vary significantly over the course of a complete set of Newton iterations, but the
mean and the median are close.

Consider the following idealized model for the execution time of the fixed-size problem
on p processors. Let T(p) be the overall execution time, I(p) the number of linear iterations,
and C(p) the average cost per iteration. (We note that in GMRES, the average cost per
iteration is not independent of the number of iterations, because of the orthogonalization
overhead of later Krylov vectors is greater than earlier vectors, but we assume that the
dominant cost per iteration is the parallel Schwarz preconditioning.)

The overall parallel efficiency is defined as rj(p) = ^JT^T, where T(p) = I{p) ■ C(p).
Since we lack results for p = 1 on this problem of industrial size (512 x 512), we replace
all efficiencies by relative efficiencies with respect to the minimum configuration of pi = 8.
The overall relative parallel efficiency is therefore defined as r)(pi -> p) = Pl

p.T(p\- The
numerical efficiency, a measure of the robustness of the preconditioning with respect to
increasing granularity, is T]numer(p1 -+ p) = ^^. The implementation efficiency is the

remaining factor, r]impi(pi -+p) = P
p'%\l]K so tnat v(Pi -* P) = Vnumer(p) x Vimpl(p)-

The numerical efficiency is nearly 90% or above for all cases — that is, the convergence
rate of the preconditioned linear system hardly degrades with increasing parallel granu-
larity. Approximately 13 GMRES steps are required for each subsonic Jacobian system
and approximately 23 GMRES steps for each transonic Jacobian system. This insensitivity
to granularity for a multilevel preconditioned operator is predicted by the Schwarz theory
for the subsonic case, and seems to be a fortunate consequence of the relatively confined
supersonic pocket of flow in the transonic case.

The implementation efficiency accounts for the most significant factor of overall efficiency
decline. The difference between the subsonic and transonic implementation efficiencies at
high granularity can be attributed to load imbalance, since the cells requiring upwinding are
concentrated into a small number of processors. (A more sophisticated dynamic mapping
algorithm could address this problem, but this is beyond present scope.) The subsonic
degradation of 76% in going from 4 to 32 nodes is identified as the chief remaining loss.
Redundant work and higher communication-to-computation ratio in the overlap regions,
which account for a steadily increasing fraction of all points in a fixed-size problem explain
the majority of this efficiency loss, which would disappear in a scaled problem with fixed-size
subdomains on each processor.

6.5 Sequential comparison with global ILU(fc) preconditioners

The results of this section establish Schwarz preconditioning as numerically attractive and
reasonably parallel efficient, but it is natural to ask whether its utility is limited to dis-
tributed memory implementations of Newton-Krylov methods. To satisfy curiosity on this
point, we conclude with tests of Schwarz preconditioning against the popular global ILU(AJ),

k = 0,.. .5, family of preconditioners on a non-dedicated singlerprocessor SUN SPARCsta-
tion with 512MB of memory. The results are summarized in Table 5. Because of the overlap
and the coarse solve, the Schwarz preconditioner needs more memory, even if all subdomain
problems are solved inexactly with ILU(5), than the other global ILU(&) preconditioners.
On the other hand, Schwarz outperforms all the global solvers in terms of total GMRES

17

iteration count and the total execution time. Part of the reason for the fine performance of
the Schwarz method is the much higher uni-processor Megaflop rating, which is presumably
related to much improved cache locality.

7 Conclusions

We have investigated computationally the effectiveness of Newton-Krylov-Schwarz methods
applied to the full potential equation of aerodynamics in some simplified situations in two
space dimensions. Best performance is obtained with modest overlap, a modest coarse grid
(one or two points per processor), modest-to-generous fill in the subdomain ILU precon-
ditioned, and uniformly loose convergence tolerances on the Krylov iterations within each
Newton step. For subsonic problems, the theoretically expected performance of the method
is essentially achieved. For the transonic case, the numerics are more encouraging than ex-
isting theory. Overall computation time is approximately six times greater for the transonic
than for the subsonic case, with current upwinding strategies. This can be factored into
a three-fold increase in the number of Newton steps in the transonic case, and a two-fold
increase in the number of Krylov iterations per Newton step.

Two strategies that should be employed on more nonlinearly taxing problems that we
have not considered here are mesh sequencing and pseudo-transient continuation. Their
purpose is to deliver an initial iterate for the steady-state form of Newton's method employed
in this paper that is already in the local domain of convergence on the finest grid. (Observe,
for instance, that the number of Newton steps required on M^ = 0.8 problem the 256 x 256
grid in Table 5, is roughly half that of the corresponding problem on the 512 x 512 grid in
Table 3. If the shock is correctly located on a (relatively) coarse grid, the plateau of Fig. 5
will be diminished on a finer grid that is initialized from the coarse grid solution.) Our rapid
turnaround times for two-dimensional problems artificially deemphasize the importance
of these strategies in large, complex nonlinear problems. In addition to globalizing the
Newton convergence, continuation strategies tend to improve the linear conditioning of the
intermediate problems, and are therefore potentially useful even in problems (such as ours)
for which simple initial guesses on the finest grid lead to convergence.

The broadest motivation for Newton-Krylov-Schwarz methods is the need to solve large-
scale problems with complex discretizations on distributed-memory systems with limited
memory per node. The matrix-free aspect of Newton permits shortcuts in Jacobian for-
mation storage while the domain decomposition aspect of Schwarz leads to load-balanced
data-to-memory maps that render communication stibdominant in the preconditioning. The
amount of work done in the Krylov iteration can be adjusted to produce an overall method
with the best balance between the nested components.

18

References

[1] H. BERGER, G. WARNECKE, AND W. WENDLAND, Finite elements for transonic
potential flows, TR No. 7, Mathematisches Institut, Universität Stuttgart, 1988.

[2] P. N. BROWN AND Y. SAAD, Hybrid Krylov methods for nonlinear systems of equa-
tions, SIAM J. Sei. Stat. Comput., 11 (1990), pp. 59-71.

[3] P. N. BROWN AND Y. SAAD, Convergence theory of nonlinear Newton-Krylov algo-
rithms, SIAM J. Optimization, 4 (1994), pp. 297-330.

[4] X.-C. CAI, The use of pointwise interpolation in domain decomposition methods with
non-nested meshes, SIAM J. Sei. Comput., 16 (1995), pp. 250-256.

[5] X.-C. CAI, W. D. GROPP, AND D. E. KEYES, A comparison of some domain decom-
position and IL U preconditioned iterative methods for nonsymmetric elliptic problems,
Numer. Lin. Alg. Applies, 1 (1994), pp. 477-504.

[6] X.-C. CAI, W. D. GROPP, D. E. KEYES, AND M. D. TIDRIRI, Newton-Krylov-
Schwarz methods in CFD, in Proceedings of the International Workshop on Numerical
Methods for the Navier-Stokes Equations, F. Hebeker and R. Rannacher, eds., Notes
on Numerical Fluid Mechanics, Vieweg Verlag, Braunschweig (1994).

[7] X.-C. CAI, D. E. KEYES, AND V. VENKATAKRISHNAN, Newton-Krylov-Schwarz: An
implicit solver for CFD, in "Proc. of the Eighth International Conference on Domain
Decomposition Methods in Science and Engineering" (R. Glowinski et a!., eds.), Wiley,
New York, 1996 (to appear).

[8] X.-C. CAI AND 0. WIDLUND, Domain decomposition algorithms for indefinite elliptic
problems, SIAM J. Sei. Stat. Comput., 13 (1992), pp. 243-258.

[9] T. F. CHAN AND T. MATHEW, Domain decomposition algorithms, Acta Numerica
(1994) pp. 61-143.

[10] T. F. CHAN AND B.'F. SMITH, Domain decomposition and multigrid algorithms for
elliptic problems on unstructured meshes, in Proc. of the Seventh Intl. Symp. on Domain
Decomposition Methods in Science and Engineering (D. Keyes and J. Xu, eds.), AMS,
Providence, 1995, pp. 175-189.

[11] J. E. DENNIS AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, Prentice-Hall, NJ, 1983.

[12] M. DRYJA, B. F. SMITH, AND O. B. WIDLUND, Schwarz analysis of iterative sub-
structuring algorithms for problems in three dimensions, SIAM J. Numer. Anal., 31
(1994), pp. 1662-1694.

[13] M. DRYJA AND O. B. WIDLUND, Towards a unified theory of domain decomposi-
tion algorithms for elliptic problems, in Third International Symposium on Domain
Decomposition Methods for Partial Differential Equations, held in Houston, Texas,
March 20-22, 1989, T. Chan, R. Glowinski, J. Periaux, and 0. Widlund, eds., SIAM,
Philadelphia, PA, 1990, pp 3-21.

19

[14] S. C. EISENSTAT AND H. F. WALKER, Globally convergent inexact Newton methods,
SIAM J. Optimization, 4 (1994), pp. 393-422.

[15] S. C. ElSENSTAT AND H. F. WALKER, Choosing the forcing terms in an inexact
Newton method, SIAM J. Sei. Comput., 17 (1996), pp. 16-32.

[16] R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer-

Verlag, 1984.

[17] R. GLOWINSKI et al., eds., Proc. of the Eighth Intl. Symp. on Domain Decomposition
Methods in Science and Engineering, Wiley, New York, 1996 (to appear).

[18] W. D. GROPP AND D. E. KEYES, Domain decomposition on parallel computers, Im-
pact of Comp. in Sei. and Eng., 1 (1989), pp. 421-439.

[19] W. D. GROPP AND B. F. SMITH, Users Manual for the Chameleon Parallel Program-
ming Tools, ANL-93/23, Argonne National Laboratory, 1993.

[20] , Simplified Linear Equation Solvers Manual, ANL-93/8, Argonne National Lab-
oratory, 1993.

[21] , Users Manual for KSP: Data-Structure-Neutral Codes Implementing Krylov
Space Methods, ANL-93/30, Argonne National Laboratory, 1993.

[22] W. G. HABASHI AND M. M. HAFEZ, Finite element solutions of transonic flow prob-

lems, AIAA J. 20 (1982), pp. 1368-1376.

[23] C. HlRSCH, Numerical Computation of Internal and External Flows, 2 vols., Wiley,

New York, 1990.

[24] T. L. HOLST AND W. F. BALLHAUS, Fast, conservative schemes for the full potential
equation applied to transonic flows, AIAA J. 17 (1979), pp. 145-152.

[25] W. P. HUFFMAN, R. G. MELVIN, D. P. YOUNG, F. T. JOHNSON, J. E. Busso-
LETTI, M. B. BIETERMAN, AND C. L. HILMES, Practical design and optimization
in computational fluid dynamics, AIAA Paper 93-3111, July 1993.

[26] Y. ILIASH, Y. KUZNETSOV, AND Y. VASSILEVSKI, Efficient Parallel Solution of Po-
tential Flow Problems on Nonmatching Grids, Proc. of ECCOMAS '96, Wiley, New
York, 1996 (to appear).

[27] D. E. KEYES AND J. Xu, eds., Proc. of the Seventh Intl. Symp. on Domain Decom-
position Methods in Science and Engineering, AMS, Providence, 1995.

[28] D. E. KEYES, Y. SAAD, AND D. G. TRUHLAR, eds., Domain-based Parallel and Prob-
lem Decomposition Methods in Science and Engineering, SIAM, Philadelphia, 1995.

[29] D. A. KNOLL, P. R. MCHUGH, AND D. E. KEYES, Newton-Krylov methods for low
Mach number combustion, in "Proc. of the 12th AIAA Computational Fluid Dynamics
Conference" (San Diego, June 1995), AIAA Paper 95-1672 and AIAA J. (to appear).

20

[30] C. Liu AND S. F. MCCORMICK, Multigrid, elliptic grid generation and the fast adap-
tive composite grid method for solving transonic potential flow equations, in Multigrid
Methods: Theory, Applications, and Supercomputing, S. F. McCormick, ed., Lecture
Notes in Pure and Appl. Math., 110, Marcel Dekker, New York, 1988, pp. 365-387.

[31] J. MANDEL AND J. NECAS, Convergence of finite elements for transonic potential
flows, SIAM J. Numer. Anal., 24 (1987), pp. 985-997.

[32] J. A. MEIJERINK AND H. A. VAN DER VORST, Guidelines for the usage of incomplete
decompositions in the solving sets of linear equations as they occur in practical problems,
J. Comput. Phys., 44 (1981) pp. 134-155.

[33] R. G. MELVIN, D. P. YOUNG, D. E. KEYES, C. C. ASHCRAFT, M. B. BIETERMAN,

C. L. HILMES, W. P. HUFFMAN, AND F. T. JOHNSON, A two-level iterative method
applied to aerodynamic sensitivity calculations, BCSTECH-94-047, Boeing Computer
Services, December 1994.

[34] A. QUARTERONI et al., eds., Proc. of the Sixth Intl. Symp. on Domain Decomposition
Methods in Science and Engineering, AMS, Providence, 1994.

[35] R. RANNACHER, On the convergence of the Newton-Raphson method for strongly non-
linear elliptic problems, in Nonlinear Computational Mechanics, P. Wriggers and W.
Wagner, eds., Springer-Verlag, 1991.

[36] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sei. Stat. Comp., 7 (1986), pp. 865-869.

[37] B. F. SMITH, P. E. BJ0RSTAD, AND W. D. GROPP, Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University
Press, 1996.

[38] S. TA'ASAN, G. KURUVILA, AND M. D. SALAS, Aerodynamic Design and Optimization
in One Shot, AIAA Paper 92-0025.

[39] L. B. WIGTON, N. J. Yu, AND D. P. YOUNG, GMRES acceleration of computational
fluid dynamics codes, AIAA Paper 85-1494.

[40] D. P. YOUNG, C. C. ASHCRAFT, R. G. MELVIN, M. B. BIETERMAN, W. P.
HUFFMAN, T. F. JOHNSON, C. L. HILMES, AND J. E. BUSSOLETTI, Ordering and
incomplete factorization issues for matrices arising from the TRANAIR CFD code,
BCSTECH-93-025, Boeing Computer Services, 1993.

[41] D. P. YOUNG, R. G. MELVIN, M. B. BIETERMAN, F. T. JOHNSON, AND S. S.
SAMANT, Global convergence of inexact Newton methods for transonic flow, Interna-
tional Journal for Numerical Methods in Fluids, 11 (1990), pp. 1075-1095.

[42] D. P. YOUNG, R. G. MELVIN, M. B. BIETERMAN, F. T. JOHNSON, S. S. SAMANT,

AND J. E. BUSSOLETTI, A locally refined rectangular grid finite element methods:
Application to computational fluid dynamics and computational physics, J. Comput.
Phys., 92 (1991), pp. 1-66.

21

Table 1: Varying the coarse grid size. Fine mesh 512 x 512, M^ = 0.1 and 0.8, sparse
LU for all subproblems, ovlp = 3h. "Newton" is the total number of Newton iterations.

"GMRES" is the total number of GMRES iterations occur in all of the Newton iterations.
"EXEC" is the execution time per processor in seconds for the entire calculation. "COMM"

is the total communication time per processor in seconds.

np

16

32

Coarse Grid 10x0 2x3 4x5 6x7

Newton
GMRES
EXEC
COMM
Mflop/s
Newton
GMRES

EXEC
COMM
Mflop/s
Newton
GMRES
EXEC
COMM
Mflop/s

8x9

Moo = 0.1

20 19 19 20 19
814 435 359 350 307

757.45 548.52 490.64 498.08 458.75
10.97 11.63 12.16 15.68 19.07

19 19 20 20 19

849 483 398 349 320

432.78 327.77 306.25 291.14 277.06
11.69 12.90 14.14 18.43 23.26

19 19 19 19 20
1142 636 454 387 391
333.79 244.36 207.54 200.21 215.46 227.84
16.09 18.43 19.40 25.26 34.46

10 x 11

Newton 6 6 6 6 6 6

GMRES 144 81 59 53 50 51

8 EXEC 136.79 125.30 104.18 97.28 94.18 94.63

COMM 2.14 2.10 1.95 2.39 3.28 4.24

Mflop/s 183.59 157.02 170.67 177.63 180.94 180.93

Newton 6 6 6 6 6 6

GMRES 167 92 66 54 54 54

16 EXEC 72.18 50.34 42.10 39.18 40.95 42.32

COMM 2.25 2.38 2.37 2.88 3.97 5.48

Mflop/s 295.19 266.83 277.39 280.01 272.65 265.44

Newton 6 6 6 6 6 6

GMRES 227 105 72 64 53 57

32 EXEC 47.94 29.55 24.32 24.46 23.43 26.59

COMM 3.36 2.92 2.95 4.13 4.51 7.00

Mflop/s 498.04 477.99 463.72 440.64 423.16 390.33

Moo = 0.8 •
19
311
466.20
24.52

158.70 158.47 162.20 163.44 163.00 161.15
19
330
289.89
32.79

233.50 224.48 219.17 215.38 210.78 204.68
20
385

47.68
360.18 333.53 317.77 298.29 284.96 267.36

22

Table 2: Varying the overlapping size ovlp. Fine mesh 512 x 512, M^ = 0.1 and 0.8.
Exact LTJ for all subproblems. Coarse grid size 6x7. "Newton" is the total number of
Newton iterations. "GMRES" is the total number of GMRES iterations occur in all of the
Newton iterations. "EXEC" is the execution time per processor in seconds for the entire
calculation. "COMM" is the total communication time per processor in seconds.

np ovlp = lh ovlp — 2h ovlp — 3h ovlp = Ah ovlp — 5/i
Moo = 0.1

Newton 6 6 6 6 6
GMRES 77 60 53 50 50

8 EXEC 101.12 99.90 97:31 98.31 100.50
COMM 3.22 2.59 2.46 2.36 2.59
Mflop/s 161.03 174.33 177.61 186.71 186.20
Newton 6 6 6 6 6
GMRES 82 61 54 49 49

16 EXEC 51.77 45.46 44.05 44.42 45.21
COMM 3.87 3.07 2.95 2.77 2.64
Mflop/s 267.85 276.36 279.31 277.96 284.54
Newton 6 6 6 6 6
GMRES 93 72 64 57 52

32 EXEC 30.35 28.28 26.75 26.31 26.19
COMM 5.42 4.24 3.64 3.58 3.19
Mflop/s 387.34 421.17 441.80 452.00 460.17

MTO = 0.8
Newton 19 19 20 20 20
GMRES 435 365 350 319 315

8 EXEC 527.50 489.65 498.78 491.47 492.52
COMM 17.66 15.87 16.31 15.86 16.49
Mflop/s 145.19 160.11 163.11 170.98 172.56
Newton 19 19 20 20 19
GMRES 462 377 349 324 303

16 EXEC 315.39 294.34 292.02 280.61 278.21
COMM 22.74 19.22 18.70 17.67 17.10
Mflop/s 216.43 211.85 196.48 221.34 219.24
Newton 19 19 19 19 19
GMRES 627 445 387 354 344

32 EXEC 251.96 207.12 199.90 188.99 189.44
COMM 38.08 27.51 24.12 23.02 22.31
Mflop/s 276.02 301.20 298.73 313.36 320.93

23

Table 3: Varying the level of ILU(fc) fill-in. Fine mesh 512 x 512, M^ = 0.1 and
0.8. Coarse grid is 7 x 8. ovlp = 3h. "Newton" is the total number of Newton iterations.
"GMRES" is the total number of GMRES iterations occur in all of the Newton iterations.

"EXEC" is the execution time per processor in seconds for the entire calculation. "COMM"

is the total communication time per processor in seconds.

np

16

32

16

32

ILU(fc) | Jfc = 0 * = 1 fc = 2 * = 3 k = 4 k = 5
Moo = 0.1

Newton
GMRES

EXEC
COMM
Mflop/s
Newton
GMRES
EXEC
COMM
Mflop/s
Newton
GMRES

EXEC
COMM
Mflop/s

307 175 127 98 84 75

171.46 110.07 88.26 76.11 74.28 71.74
14.08 8.10 5.87 4.54 4.44 3.62

119.80 113.63 109.46 102.36 96.00 95.43
6 6 6
299 178 129 101 87 78
97.82 64.14 51.19 43.34 40.81 40.07
16.73 9.42 6.85

6 6 6 6 6
298 179 130 104 90

Moo = 0.6
Newton
GMRES
EXEC
COMM
Mflop/s
Newton
GMRES
EXEC
COMM
Mflop/s
Newton
GMRES
EXEC
COMM
Mflop/s

19 20 18 19 19
1638 911 622 547 462

19 20 20 19 19
1693 924 707 531 460

19 20 20 19 20
1746 961 799 596 557

361.81 217.29 187.37 150.59 150.29

5.38 4.80 3i
208.04 201.60 195.17 188.34 183.56 179.69

6
82

64.34 41.92 32.73 28.18 26.34 [25.57
19.26 11.44 8.14 6.63 5.70 4.91
324.76 321.72 318.07 308.78 304.06 305.19

19
424

863.15 523.33 382.27 364.11 335.47 330.76
77.30 42.64 29.13 25.90 21.62 19.81
127.49 125.37 124.04 123.70 122.13 119.90

19
423

526.40 316.98 255.54 209.27 195.96 192.16
90.88 49.9 38.32 28.55 25.14 22.46
220.22 213.73 215.42 214.21 210.64 208.59

20
501
145.12

110.89 61.46 51.32 38.02 35.60 32.07
342.40 336.48 342.84 341.52 343.77 340.06

24

Table 4: Parallel efficiency. Fine mesh 512 x 512, M^ = 0.1 and 0.8. Coarse grid is
7 x 8. ovlp = 3/i. "GMRES" and "EXEC" are the total number of GMRES iterations and
seconds of execution time per 6 Newton steps in the upper half of the table, and per 19
Newton steps in the lower half.

np GMRES EXEC Vnumer Vimpl V

Moo = 0.1

8 75 71.1 - - -

16 78 40.1 0.961 0.931 0.895
32 82 25.6 0.915 0.766 0.701

Mo 0.8
8 424 330.1 - - -

16 423 192.2 1.002 0.860 0.861
32 475 137.9 0.891 0.674 0.601

Table 5: Sequential comparison of the additive Schwarz preconditioner(OSM) with the
global ILU(fc), k = 0,..., 5, preconditioned on a single processor Sun workstation. The fine
mesh is 256 x 256. The specifications of OSM are: 8 subdomains, 3/i overlap, 7x8 coarse
grid, and ILU(5) as the subdomain solver. MEM is the total memory needed to store the
preconditioning matrix in Megabytes.

OSM ILU(0) ILU(l) ILU(2) ILU(3) ILU(4) ILU(5)
Moo = 0.1

Newton 6 6 6 6 6 6 6
GMRES 48 509 280 195 148 119 103

EXEC 496.29 2754.54 1599.84 1178.55 970.72 817.42 771.04
MEM(MB) 24.22 10.58 10.57 13.65 16.83 20.12 22.87
Mflop/s 32.12 6.68 6.48 6.19 6.04 5.85 5.40

MM = 0.8
Newton 11 12 12 11 11 11 11
GMRES 136 1391 666 464 328 268 217

EXEC 1240.18 7766.42 3826.05 2848.73 2278.81 1761.89 1526.82
MEM(MB) 24.40 10.64 10.63 13.75 16.95 20.26 23.06
Mflop/s 36.57 6.53 6.48 6.20 5.63 5.99 5.79

25

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public «porting burden for this collection of information is estimated to average 1 I™ »"-WJÄ
gathering%nd™intainingthe data needed, and complet.ng and revrev^

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE

May 1996

3. REPORT TYPE AND DATES COVERED

Contractor Report

4. TITLE AND SUBTITLE
PARALLEL NEWTON-KRYLOV-SCHWARZ ALGORITHMS
FOR THE TRANSONIC FULL POTENTIAL EQUATION

6. AUTHOR(S)

Xiao-Chuan Cai, William D. Gropp, David E. Keyes
Robin G. Melvin, and David P. Young

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 96-39

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-198341
ICASE Report No. 96-39

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Proc. of the 1996 Copper Mountain Conf. on Iterative Methods; submitted to SIAM J. of Scientific Computing.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 64

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) ,. .
We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, m
particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements.
The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a
Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate
that NKS combined with a density upwinding continuation strategy for problems with weak shocks, is robust and
economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification
of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomam
overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate,
overall execution time, and parallel efficiency on a distributed-memory parallel computer.

14. SUBJECT TERMS
full potential equation; finite elements; domain decomposition; JNewton methods;
Krylov space methods; overlapping Schwarz preconditioner; parallel computing

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

27

16. PRICE CODE
A03

20. LIMITATION
OF ABSTRACT

NSN 7540-01-280-5500
Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

